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Abstract
Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable

symptoms and difficult diagnosis. In order to reclassify them based on genetic markers

rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms.

However naive approaches tend to group patients primarily by their geographic origin. To

reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of

ancestry-independent genetic variations from all variations detected by Principal Compo-

nent Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust

successfully reduced the ancestry signal. Results were compared with association studies

between the cases and controls without or with reference population stratification correction

methods. SNPClust amplified the disease discriminating signal and the ratio of significant

associations outside the HLA locus was greater compared to population stratification cor-

rection methods. SNPClust will enable the use of ancestry-independent genetic information

in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R

package and demonstrated on the public Human Genome Diversity Project dataset at

https://github.com/ThomasChln/snpclust.

Introduction
The PRECISESADS project aims at reclassifying Systemic Autoimmune Diseases (SADs), a
group of chronic inflammatory conditions characterized by the presence of unspecific autoan-
tibodies in the serum and serious clinical consequences, based on genetic and molecular bio-
markers rather than clinical criteria. SADs affect 1% of the global population [1] and have
limited treatment options and difficult diagnosis. The diseases studied in PRECISESADS are
Systemic Lupus Erythematosus (SLE), Systemic Sclerosis, Rheumatoid Arthritis, Sjögren’s Syn-
drome, Primary Antiphospholipid Antibody Syndrome, and undifferentiated cases.
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Several technological platforms are used to generate biomarker data from patient samples,
to obtain as much information as possible about the genetic and molecular mechanisms
involved. The technologies include Single Nucleotide Polymorphisms (SNPs) microarrays,
which measures hundreds of thousands of common genetic variations in a population, gene
expression and protein microarrays, mass spectrometry for metabolic profiling, or flow cytom-
etry, as examples. The methodological approach is to first analyze data from each technological
platform individually and then to merge relevant features from each platform to build the final
classifier. Here we present the results of the preparatory work for SNP clustering analysis per-
formed on a test dataset.

Familial and twin studies have estimated a 50% genetic component in SADs [2, 3] and
Genome-Wide Association Studies (GWAS) have found several loci associated with SADs [4].
However, genome-wide clustering of SNPs is known to primarily group patients by ancestry
prior to disease relevant features [5, 6]. In order to emphasize the disease relevant signal, we
developed SNPClust, a clustering method to overcome this “ancestry bias” by selecting and
summarizing SNPs contributing strongly to localized sources of genetic variation as detected
by Principal Component Analysis (PCA) [7].

SNPClust first applied PCA to project patients on the largest sources of variance by linear
combinations of SNPs. Then for each principal component, the SNPs that had significantly high
contributions were selected. Many correlated SNPs were selected from specific loci due to linkage
disequilibrium between SNPs, which form haplotypes, and therefore still produced an ancestry
signal. To address this, for SNPs selected from the same principal component, SNPClust summa-
rized physically close SNPs in linkage disequilibrium by one variable inferring a haplotype, and
reduced the ancestry signal while conserving the other underlying genetic signals.

The test dataset contained SNP microarray data from 4,212 European SLE patients and 1,221
European controls. After quality control, Minor Allele Frequency (MAF) filtering, and tag SNP
selection [8], PCA was performed on 379,190 SNPs from 5,433 patients. For each of the 100
first principal components, strong contributing SNPs were selected and SNP-dense regions
were summarized by haplotypes. A total of 261 SNPs were selected and 331 haplotypes inferred.

On the SNPClust selected dataset, the clustering signal due to ancestry was significantly
reduced. The performance of SNPClust was compared to GWAS standard approaches and ref-
erence population substructure correction methods [9, 10]. SNPClust was shown to enrich the
selection of ancestry-independent sources of genetic variation associated with the phenotype,
and hence propose more robust candidate biomarkers.

Results

Ancestry clusters
As expected, PCA applied on the input dataset (without any prior feature selection or data
transformation) grouped patients by the country of origin of the samples, discriminating
Northern from Southern Europeans in the first principal component and Eastern fromWest-
ern Europeans in the second (Fig 1).

This ancestry signal can also be seen in most of the 10 first principal components. The most
important non-ancestry-based source of genetic variation in the PCA appeared on principal
component 3 (see below), thus confirming that the ancestry signal is much stronger than clini-
cally relevant signals in clustering approaches.

Selection of strong contributors
The analysis of the contributions of SNP markers to the PCA principal component axes
revealed that the first twenty principal components were driven by large localized SNP groups.
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The chromosome 6HLA locus was the strongest and largest contributor in all of the first 8
principal components except principal component 3. Principal component 3 was driven by the
chromosome 8 locus 8p23, one of the largest inversion polymorphism encompassing 4,500,000
base pairs and including the SLE associated gene BLK [11] (Fig 2). As 8p23 was a main contrib-
utor in some of the first principal components, we confirmed that ancestry-independent signals
can be extracted by SNPClust.

The 100 first principal components, on which the Gaussian mixture models based selection
was applied, explained 3.5% of the total variance. Large localized SNP groups were selected
along with other strong contributors. In total, 10,422 SNPs were selected, including 4,090 SNPs
from the first 8 principal components (Fig 2).

Fig 1. Initial grouping of genetic data. Two first principal components of the PCA on 379,190 SNPs from 5,433
European SLE patients and controls with 95% confidence ellipses. Northern and Southern Europeans were
discriminated in the first principal component. Eastern andWestern Europeans were discriminated in the second.
2,733 individuals (50%) did not have geographic information and were colored in gray.

doi:10.1371/journal.pone.0160270.g001
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Haplotype summarization
Then, the 10,422 selected SNPs were reduced to 261 SNPs and 331 haplotypes by the haplotype
estimation process described in the methods. For example, on principal component 3, the 875
SNPs from chromosome 8 were summarized by 2 distinct haplotypes h1 and h2. Each subject
was assigned a h1/h1, h1/h2, or h2/h2 haplotype combination for this region (Fig 3).

Ancestry signal reduction
We applied PCA on the selected SNPs and haplotypes. The first principal components did not
cluster patients neither by phenotype nor by centers (Fig 4).

Fig 2. Selection of strong SNP contributors. (a) The 2,000 most contributing SNPs to each of the first 8 principal
components are displayed by chromosomal position and colored by chromosomes. Principal components were driven by
large localized SNP groups and the chromosome 6 locusHLAwas the strongest and largest contributor in all of the first 8
principal components, except principal component 5. (b) Selection of SNPs by the Gaussian mixtures based method.
Selected SNPs are colored in red. SNPs are displayed on the x-axis by rank of chromosomic position, i.e. SNPs are
regularly spaced and ordered by chromosome and position.

doi:10.1371/journal.pone.0160270.g002
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The method therefore reduced the ancestry signal and produced a set of features that could
be further investigated for disease relevant signals.

Benchmark
GWAS have found several loci associated with SADs. However such approaches are impaired
by population substructures that can generate false-positives or domestic association signals
[4]. In order to evaluate the information conserved by SNPClust and compare it to existing
population stratification correction methods, a GWAS was performed on the input dataset,
without or with subpopulation structure correction (see methods), and compared with the
results of a GWAS performed on the SNPClust selected dataset.

Compared with the GWAS performed directly on the input dataset, the GWAS performed
on the SNPClust-processed dataset selected much less SNPs with a nominal p-value< 0.05:

Fig 3. Haplotype summarization of the 8p23 locus. The haplotypes estimated from the 875 selected SNPs from
chromosome 8 were best fitted by two groups. The resulting three groups, plotted with 95% confidence ellipses,
accurately represented the three clusters in principal component 3 and showed that haplotypes preserved information
carried by SNPs.

doi:10.1371/journal.pone.0160270.g003

SNP Clustering in Systemic Autoimmune Diseases

PLOS ONE | DOI:10.1371/journal.pone.0160270 August 4, 2016 5 / 10



97,066 vs. 222. In addition, the initial selection of SNPs by SNPClust reduced the impact of the
multiple testing correction: 59% of SNPs on the input dataset with p< 0.05 had a False Discov-
ery Rate (FDR) [12]> 5%, compared to only 30% after SNPClust (Table 1).

Compared with GWAS with genomic control [9], SNPClust produced 42% less significant
associations after multiple testing correction, but 3 times more outside theHLA region.

Fig 4. PCA after SNPClust application. First principal components of the PCA on the 261 SNPs and 331
haplotypes from 5,433 patients, with 95% confidence ellipses. The principal components did not discriminate SLE
patients from controls.

doi:10.1371/journal.pone.0160270.g004

Table 1. Performances of feature selectionmethods. Associations of the input dataset without or with population stratification correction by genomic con-
trol and Eigenstrat (with 5 and 10 principal components considered) compared with SNPClust.

Feature selection method Number of p-values < 5% Number of FDR q-values < 5% Number of FDR q-values in HLA < 5%

(none) 97,066 39,555 951

Genomic control 18,267 271 232

Eigenstrat 5 22,605 117 64

Eigenstrat 10 15,269 28 9

SNPClust 222 156 38

doi:10.1371/journal.pone.0160270.t001
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Therefore SNPClust has less statistical power than genomic control but is much more effective
in finding associations from several loci. Eigenstrat [10] was performed with 5 and 10 principal
components. In both cases, SNPClust had more statistical power, with less hits inHLA (24%
vs. 55% and 32%).

Increasing statistical power can increase false positive rate. However SLE has still a large
unexplained heritability and increasing the power is a possible step to reduce it by discovering
novel markers. Additionally, the FDR multiple testing correction method can also be more
stringent to reduce the power and the false positive rate.

The HLA locus exhibited a pitfall of GWAS with multiple testing correction: even after
TagSNP selection, most associated SNPs were from few loci, due to haplotypes. This had the
effect of excluding other loci when multiple testing correction was applied. SNPClust overcame
this by summarizing the SNPs from one locus in one haplotype. Associated genes found by
SNPClust and Eigenstrat with 5 components were compared. SNPClust had 67 unique genes
associated, Eigenstrat had 37, and with an intersection of 1. The associated genes were also
compared to previously known genes associated with SADs. The intersection had 1 known
gene (NOTCH4). Excluding this one, SNPClust had 4 known genes (MICA,MSH, PSORS1C1,
RAD51B) and Eigenstrat 4 (ATG5, BANK1, STAT4, TNXB).

Discussion
The ancestry information is contained in many SNPs across the genome, and may therefore be
present in clinically relevant SNPs, in particular in auto-immune diseases where theHLA locus
is involved. Therefore removing simply the main known ancestry-informative markers may
lead to the removal of clinically relevant SNPs while preserving many SNPs carrying small bits
of ancestry information. Approaches considering the first principal components to adjust asso-
ciations [10] can also result in loss of clinically relevant information because not all the first
principal components are associated with ancestry.

SNPClust overcomes these limitations in two steps. First the major contributors to a large
number of the first principal components are considered, therefore selecting the markers
explaining most of the variance in the dataset. This has the property of preserving the largest
sources of genetic variation. Then, the SNPs that could be considered as haplotypes due to
their correlation and spatial proximity are summarized. This reduces the relative importance
of ancestry information present in many SNPs while preserving the information conveyed by
the haplotypes. At the same time, it also reduces the multiple-testing problem.

In the dataset of 379,190 SNPs from SLE patients and controls, the first principal compo-
nents were associated with ancestry. After application of SNPClust 592 markers remained and
the first principal components were not associated to the centers. Therefore the ancestry infor-
mation and the number of markers were strongly reduced.

This method is also interesting for GWAS, due to the enrichment of ancestry-independent
markers tested and the reduced multiple testing problem. When compared to genomic control,
42% less SNPs were associated with the diseases but 10 times more outside theHLA locus.
Compared to Eigenstrat, SNPClust had more statistical power and a higher ratio of associations
outside HLA. Therefore SNPClust is useful to find several associated loci without being over-
whelmed by strong signals from one single locus such as HLA.

SNPClust will be applied to the SNP array data generated in the PRECISESADS project and
will possibly enable the use of ancestry-independent genetic information in the reclassification
of SADs. It is available as an R package and demonstrated on the public Human Genome
Diversity Project dataset [6] at https://github.com/ThomasChln/snpclust.
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Materials and Methods

Input dataset
The dataset contained 4,212 European SLE patients and 1,221 European healthy controls. It
was previously published [13] and approved by ethics committees. No samples were used and
records were de-identified. The files were binary PLINK files [14]. They were converted in the
Genomic Data Structure format [15].

Analysis set
Observations with missing value rates above 3% and SNPs with missing value rates above 1%
were excluded. An additive genetic model is then used (AA = 0, AB = 1, BB = 2) and SNPs with
MAF below 5% were excluded to remove rare variants, which are more prone to genotyping
errors. In addition, in order to decrease the required computation time and memory usage,
redundant SNPs were removed by applying TagSNP (r2> 0.8, window of 500,000 base pairs).
The missing values were imputed by random sampling of each SNP. Then each SNP was cen-
tered and scaled to unit variance.

A total of 5,433 patients and 379,190 SNPs were selected for analysis. This dataset defines
our analysis set.

SNPClust
Selection of strong contributors to principal components. PCA was applied on the anal-

ysis set. PCA is a dimensionality reduction method, which projects SNPs by linear combination
to maximize the variance on successive axes, i.e. principal components, while constraining the
axes to be orthogonal. SNPs with large absolute projection values, i.e. loadings or contributions,
to the 100 first principal components were selected.

For each principal component, a Gaussian mixture model [16] with 2 mixture components
was fitted to the absolute values of SNP contributions. Only the 3,000 highest absolute contri-
butions were considered for computational performance. In Gaussian mixtures, SNPs have a
probability of being assigned to each Gaussian model, from which can be derived a classifica-
tion uncertainty. Only the strong contributors have null uncertainty, therefore SNPs with a
null classification uncertainty were selected. If SNPs were selected from more than 8 chromo-
somes, the model was fitted with an additional mixture until the condition was satisfied. If the
condition was not satisfied after 4 iterations, i.e. with 5 mixtures, no SNPs were selected from
that principal component (Algorithm 1).

Algorithm 1 Selection of strong contributors
1: Input: PCA rotation matrix i.e. SNPs coefficients to principal components
2: for coefficients in coefficientsPC1, . . ., coefficientsPC100 do
3: coefficients 3,000 highest absolute values of coefficients
4: selection ;
5: for nmixtures in 2, 3, 4, 5 do
6: GMM Gaussian mixture model of nmixtures components on coefficients
7: selection coefficients with null uncertainty classification in

GMM
8: if Number of chromosomes in selection < = 8 then
9: exit for loop

10: end if
11: end for
12: store selection in output
13: end for
14: Output: selectionPC1, . . ., selectionPC100
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Haplotype summarization. In a second step, in order to summarize large loci, for each
principal component, selected SNPs on a same chromosome and closer than 1,000,000 base
pairs away were summarized by haplotypes, pairs of binary values. Haplotypes were inferred
with the SHAPEIT software [17] which uses hidden Markov models and has linear complexity
with the number of SNPs. Haplotypes were then grouped in 2 classes by Gaussian mixture
models. Correlated haplotypes were removed when they were on the same chromosome and
the squared correlation was above 0.8 (Algorithm 2).

Algorithm 2 Summarization of physically close SNPs
1: Input: Selected SNPs for the 100 first principal components
2: haplotypes ;
3: for SNPs in selectionPC1, . . ., selectionPC100 do
4: for locus in groups of SNPs closer than 1,000,000 base pairs in SNPs do
5: haplotype Haplotype estimation of locus
6: SNPs Exclude locus from SNPs
7: store haplotype in haplotypes
8: end for
9: end for

10: for haplotypes in groups of haplotypes from same chromosome do
11: haplotypes Squared correlation threshold of 0.8 on haplotypes
12: end for
13: Output: Union of haplotypes and SNPs

Benchmark
To evaluate the SNPClust algorithm, we performed a GWAS on the SNPClust selected dataset
and on the input dataset with and without population stratification correction. First, a general-
ized linear model with a binomial error distribution was fitted to each SNP and haplotype to
predict the disease of patients. Type 2 Analysis of Variance was then applied to obtain p-values.

Multiple testing correction was performed with FDR, and results were compared with the
outcome of our method. Then, two population stratification correction methods were tested,
genomic control and Eigenstrat.
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